

Full Measure Submission to Partnership for Quality Measurement

Scientific Acceptability

Reliability

Provide the statistical results from reliability testing for each level of reliability testing conducted.*

Exhibit 7 provides the distribution of reliability scores for CBE #3453. The average signal-tonoise reliability for the 7-day rate was 0.99785, and ranged from 0.98723 to 0.99996 across states. The average signal-to-noise reliability for the 14-day rate was 0.99782, and ranged from 0.98581 to 0.99996 across states.

If you conducted accountable entity-level testing, provide the reliability results for each decile in the table.

Exhibit 7. Distribution of State-Level Reliability Scores	
---	--

	N	Mean	Min	Decile 1	Decile 2	Decile 3	Decile 4	Median	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10
7-Day	50	0.99785	0.98723	0.99487	0.99629	0.99754	0.99836	0.99869	0.99912	0.99930	0.99970	0.99980	0.99996
14-Day	50	0.99782	0.98581	0.99495	0.99647	0.99771	0.99837	0.99872	0.99911	0.99935	0.99973	0.99984	0.99996

Provide your interpretation of the results in terms of demonstrating reliability.*

The signal-to-noise analyses showed that the reliability of CBE #3453 is excellent. Although high signal-to-noise reliability is not indicative of high-quality healthcare, it does indicate that the measure may be used to distinguish between states with respect to healthcare quality.

High reliability for CBE #3453 is likely supported by large enough sample sizes at the state level. The median number of denominator episodes per state was 5,519 (ranging from 66 to 97,231).