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Table 1. HCCN 1 facility-level patient characteristics, N (%)
	Characteristics
	Health center
1
	Health center
2
	Health center
3
	Health center
4
	Health center
5
	Health center
6

	Total
	5114
	1987
	6705
	3973
	689
	1255

	Age
	
	
	
	
	
	

	15-20 years
	762 (14.9%)
	228 (11.5%)
	1343 (20.0%)
	934 (23.5%)
	32 (4.6%)
	188 (15.0%)

	21-44 years
	4352 (85.1%)
	1759 (88.5%)
	5362 (80.0%)
	3039 (76.5%)
	657 (95.4%)
	1067 (85.0%)

	Race
	
	
	
	
	
	

	Asian
	15 (0.3%)
	4 (0.2%)
	63 (0.9%)
	91 (2.3%)
	4 (0.6%)
	22 (1.8%)

	Native Hawaiian or other Pacific Islander
	41 (0.8%)
	0 (0%)
	4 (0.1%)
	51 (1.3%)
	0 (0%)
	1 (0.1%)

	Black/African American
	2637 (54.1%)
	41 (2.1%)
	319 (4.8%)
	450 (11.3%)
	24 (3.5%)
	53 (4.3%)

	American Indian/Alaska Native
	67 (1.3%)
	7 (0.4%)
	10 (0.2%)
	58 (1.5%)
	6 (0.9%)
	11 (0.9%)

	White
	1569 (30.7%)
	1790 (90.1%)
	2457 (36.7%)
	1782 (44.9%)
	455 (66.0%)
	276 (22.0%)

	More than one race
	108 (2.1)
	19 (1.0%)
	161 (2.4%)
	163 (4.1%)
	66 (9.7%)
	36 (2.9%)

	Unreported/Refused to report
	677 (13.2%)
	126 (6.3%)
	3691 (55.1%)
	1378 (34.7%)
	134 (19.4%)
	856 (68.2%)

	Ethnicity
	
	
	
	
	
	

	Hispanic/Latino
	293(5.7%)
	329 (16.6%)
	880 (13.1%)
	656 (16.5%)
	20 (2.9%)
	101 (8.1%)

	Non-Hispanic/Latino
	3360 (65.7%)
	135 (6.8%)
	887 (13.2%)
	1380 (34.7%)
	504 (72.9%)
	266 (21.2%)

	Unreported/Refused to Report
	1461 (28.6%)
	1523 (76.6%)
	4938 (73.6%)
	1937 (48.8%)
	166 (24.2%)
	888 (70.8%)



Table 2. HealthEfficient facility-level patient characteristics, N (%)
	Characteristics
	Health center 1
	Health center 2
	Health center 3

	Total
	1460
	2510
	435

	Age
	
	
	

	15-20 years
	233 (16.0%)
	393 (15.7%)
	122 (28.0%)

	21-44 years
	1227 (84.0%)
	2117 (84.3%)
	313 (72.0%)

	Race
	
	
	

	Asian
	121 (8.3%)
	59 (2.4%)
	15 (3.4%)

	Native Hawaiian or other Pacific Islander
	8 (0.6%)
	46 (1.8%)
	2 (0.5%)

	Black/African American
	585 (40.2%)
	783 (31.2%)
	80 (18.4%)

	American Indian/Alaska Native
	27 (1.9%)
	62 (2.5%)
	2 (0.5%)

	White
	585 (40.1%)
	966 (38.5%)
	177 (40.8%)

	More than one race
	2 (0.1%)
	16 (0.7%)
	13 (3.0%)

	Unreported/Refused to report
	132 (9.0%)
	578 (23.0%)
	146 (33.5%)

	Ethnicity
	
	
	

	Hispanic/Latino
	577 (39.5%)
	0 (0%)
	0 (0%)

	Non-Hispanic/Latino
	833 (57.1%)
	1102 (43.9%)
	205 (47.1%)

	Unreported/Refused to Report
	50 (3.4%)
	1408 (56.1%)
	230 (52.9%)


	
Table 3. HCCN 1 clinician group/practice-level patient characteristics, N (%)
	Characteristics
	Sites 1 – 17, range

	Total
	537 - 3676

	Age
	

	15-20 years
	32 – 624 (4.6% - 53.4%)

	21-44 years
	463 – 3268 (46.6% - 95.4%)

	Race
	

	Asian
	1 – 50 (0.1 - 4.0%)

	Native Hawaiian or other Pacific Islander
	0 – 25 (0 - 3.1%)

	Black/African American
	14 – 638 (1.5 - 72.3%)

	American Indian/Alaska Native
	1 – 30 (0 – 2.4%)

	White
	91 – 1126 (11.3 – 91.2%)

	More than one race
	7 – 67 (0.7 – 9.7%)

	Unreported/Refused to report
	32 – 2634 (4.8 – 71.7%)

	Ethnicity
	

	Hispanic/Latino
	6 – 496 (0.9 – 20.2%)

	Non-Hispanic/Latino
	61 – 766 (6.7 – 89.7%)

	Unreported/Refused to Report
	64 – 2845 (9.4 – 79.7%)




Table 4. HealthEfficient clinician group/practice-level patient characteristics, N (%)
	Characteristics
	Site 1
	Site 2
	Site 3
	Site 4
	Site 5
	Site 6

	Total
	1996
	10
	504
	1460
	365
	70

	Age
	
	
	
	
	
	

	15-20 years
	312 (15.6%)
	2 (20.0%)
	79 (15.7%)
	233 (16.0%)
	52 (14.3%)
	70 (100%)

	21-44 years
	1684 (84.4%)
	8 (80.0%)
	425 (84.3%)
	1227 (84.0%)
	313 (85.8%)
	0 (0%)

	Race
	
	
	
	
	
	

	Asian
	49 (2.6%)
	0 (0%)
	10 (2.1%)
	121 (8.3%)
	3 (0.8%)
	12 (17.1%)

	Native Hawaiian or other Pacific Islander
	36 (1.8%)
	0 (0%)
	10 (1.9%)
	8 (0.6%)
	2 (0.6%)
	0 (0%)

	Black/African American
	634 (31.5%)
	2 (20.0%)
	147 (29.5%)
	585 (40.2%)
	57 (15.2%)
	23 (32.9%)

	American Indian/Alaska Native
	53 (2.6%)
	1 (10.0%)
	8 (1.7%)
	27 (1.9%)
	2 (0.6%)
	0 (0%)

	White
	744 (37.3%)
	5 (50.0%)
	217 (42.6%)
	585 (40.1%)
	167 (46.1%)
	10 (14.3%)

	More than one race
	12 (0.6%)
	0 (0%)
	4 (0.8%)
	2 (0.1%)
	13 (3.6%)
	0 (0%)

	Unreported/Refused to report
	468 (23.6%)
	2 (20.0%)
	108 (21.4%)
	130 (8.9%)
	121 (33.2%)
	25 (35.7%)

	Ethnicity
	
	
	
	
	
	

	Hispanic/Latino
	0 (0%)
	0 (0%)
	0 (0%)
	577 (39.5%)
	0 (0%)
	0 (0%)

	Non-Hispanic/Latino
	892 (44.7%)
	3 (30.0%)
	207 (41.1%)
	833 (57.1%)
	162 (44.4%)
	43 (61.4%)

	Unreported/Refused to Report
	1104 (55.3%)
	7 (70.0%)
	297 (58.9%)
	50 (3.4%)
	203 (55.6%)
	27 (38.6%)




Table 5. Summary of reliability results by age group
	[bookmark: _heading=h.1t3h5sf]Level
	Age group
	Median N
	Reliability 

	Facility (HCCN 1)
	15-44
	2980
	0.999

	
	21-44
	2399
	0.999

	
	15-20
	495
	0.989

	Facility (HealthEfficient)
	15-44
	1460
	0.988

	
	21-44
	1227
	0.989

	
	15-20
	233
	0.754

	Clinician group/practice (HCCN 1)
	15-44
	933
	0.999

	
	21-44
	719
	0.999

	
	15-20
	167
	0.996

	Clinician group/practice (HealthEfficient)
	15-44
	435
	0.959

	
	21-44
	369
	0.931

	
	15-20
	75
	0.905




Table 6. Rates and reliabilities for Contraceptive Care Screening by facility, HCCN 1, 2023.
	Health center ID
	
	
	
	15 – 20 Years
	
	
	
	21 - 44 years
	
	
	
	All age groups

	
	SINC 
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability


	1
	320
	762
	0.42
	0.998
	2835
	4352
	0.651
	1
	3155
	5114
	0.617
	1

	2
	0
	228
	0
	0.993
	2
	1759
	0.001
	0.999
	2
	1987
	0.001
	0.999

	3
	45
	1343
	0.034
	0.999
	908
	5362
	0.169
	1
	953
	6705
	0.142
	1

	4
	719
	934
	0.77
	0.998
	2541
	3039
	0.836
	1
	3260
	3973
	0.821
	1

	5
	2
	32
	0.062
	0.954
	137
	657
	0.209
	0.998
	139
	689
	0.202
	0.998

	6
	11
	188
	0.059
	0.992
	125
	1067
	0.117
	0.999
	136
	1255
	0.108
	0.999

	Total or Mean
	1097
	3487
	0.315
	
	6548
	16236
	0.403
	
	7645
	19723
	0.388
	

	
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability

	
	Median n
	495
	
	0.989
	Median n
	2399
	
	0.999
	Median n
	2980
	
	0.999

	
	Min n
	32
	
	
	Min n
	657
	
	
	Min n
	689
	
	



Table 7. Rates and reliabilities for Contraceptive Care Screening by clinician group/practice, HCCN 1, 2023.
	Site ID
	
	
	
	15 – 20 Years
	
	
	
	21 - 44 years
	
	
	
	All age groups

	
	SINC 
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability


	1
	176
	176
	1
	0.997
	611
	626
	0.976
	0.999
	787
	802
	0.981
	0.999

	2
	22
	46
	0.478
	0.99
	310
	491
	0.631
	0.998
	332
	537
	0.618
	0.998

	3
	48
	129
	0.372
	0.996
	574
	889
	0.646
	0.999
	622
	1018
	0.611
	0.999

	4
	21
	79
	0.266
	0.994
	222
	463
	0.479
	0.998
	243
	542
	0.448
	0.998

	5
	43
	151
	0.285
	0.997
	306
	530
	0.577
	0.998
	349
	681
	0.512
	0.999

	6
	104
	167
	0.623
	0.997
	523
	719
	0.727
	0.999
	627
	886
	0.708
	0.999

	7
	82
	190
	0.432
	0.997
	900
	1260
	0.714
	0.999
	982
	1450
	0.677
	0.999

	8
	0
	120
	0
	0.996
	2
	952
	0.002
	0.999
	2
	1072
	0.002
	0.999

	9
	0
	108
	0
	0.996
	0
	807
	0
	0.999
	0
	915
	0
	0.999

	10
	169
	384
	0.44
	0.999
	635
	1097
	0.579
	0.999
	804
	1481
	0.543
	0.999

	11
	121
	121
	1
	0.996
	625
	636
	0.983
	0.999
	746
	757
	0.985
	0.999

	12
	253
	253
	1
	0.998
	670
	680
	0.985
	0.999
	923
	933
	0.989
	0.999

	13
	0
	624
	0
	0.999
	2
	544
	0.004
	0.998
	2
	1168
	0.002
	0.999

	14
	42
	311
	0.135
	0.998
	643
	1550
	0.415
	0.999
	685
	1861
	0.368
	1

	15
	3
	408
	0.007
	0.999
	263
	3268
	0.08
	1
	266
	3676
	0.072
	1

	16
	2
	32
	0.062
	0.985
	137
	657
	0.209
	0.999
	139
	689
	0.202
	0.999

	17
	11
	188
	0.059
	0.997
	125
	1067
	0.117
	0.999
	136
	1255
	0.108
	0.999

	Total or Mean
	1097
	3487
	0.315
	
	6548
	16236
	0.403
	
	7645
	19723
	0.388
	

	
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability

	
	Median n
	167
	
	0.996
	Median n
	719
	
	0.999
	Median n
	933
	
	0.999

	
	Min n
	32
	
	
	Min n
	463
	
	
	Min n
	537
	
	



Table 8. Rates and reliabilities for Contraceptive Care Screening by facility, HealthEfficient, 2023.
	Health center ID
	
	
	
	15 – 20 Years
	
	
	
	21 - 44 years
	
	
	
	All age groups

	
	SINC 
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability


	1
	95
	233
	0.408
	0.771
	620
	1227
	0.505
	0.994
	715
	1460
	0.49
	0.993

	2
	103
	393
	0.262
	0.851
	322
	2117
	0.152
	0.996
	425
	2510
	0.169
	0.996

	3
	36
	122
	0.295
	0.639
	151
	313
	0.482
	0.976
	187
	435
	0.43
	0.976

	Total or Mean
	234
	748
	0.313
	
	1093
	3658
	0.299
	
	1327
	4405
	0.301
	

	
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability

	
	Median n
	233
	
	0.754
	Median n
	1227
	
	0.989
	Median n
	1460
	
	0.988

	
	Min n
	122
	
	
	Min n
	313
	
	
	Min n
	435
	
	



Table 9. Rates and reliabilities for Contraceptive Care Screening by clinician group/practice, HealthEfficient, 2023.
	Site ID
	
	
	
	15 – 20 Years
	
	
	
	21 - 44 years
	
	
	
	All age groups

	
	SINC 
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability

	SINC
	Total N
	Rate
	Reliability


	1
	100
	312
	0.321
	0.994
	312
	1684
	0.185
	0.998
	412
	1996
	0.206
	0.999

	2
	0
	2
	0
	0.526
	1
	8
	0.125
	0.68
	1
	10
	0.1
	0.8

	3
	3
	79
	0.038
	0.978
	9
	425
	0.021
	0.991
	12
	504
	0.024
	0.995

	4
	95
	233
	0.408
	0.992
	620
	1227
	0.505
	0.997
	715
	1460
	0.49
	0.998

	5
	36
	52
	0.692
	0.967
	151
	313
	0.482
	0.988
	187
	365
	0.512
	0.993

	6
	0
	70
	0
	0.975
	0
	0
	NA
	NA
	0
	70
	0
	0.966

	Total or Mean
	234
	748
	0.313
	
	1093
	3657
	0.299
	
	1327
	4405
	0.301
	

	
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability
	
	
	
	Overall Reliability

	
	Median n
	75
	
	0.905
	Median n
	369
	
	0.931
	Median n
	435
	
	0.959

	
	Min n
	2
	
	
	Min n
	0
	
	
	Min n
	10
	
	





Table 10. HCCN 1 facility-level reliability. (Due to a small number of entities at this level, we are only presenting the minimum and maximum reliability)
	
	Overall
	Min
	Decile
1
	Decile
2
	Decile
3
	Decile
4
	Decile
5
	Decile
6
	Decile
7
	Decile
8
	Decile
9
	Decile
10
	Max

	Reliability
	0.999
	0.998
	
	
	
	
	
	
	
	
	
	
	1.000

	Mean Performance Score
	0.388
	0.001
	
	
	
	
	
	
	
	
	
	
	0.821

	N of Entities
	6
	1
	
	
	
	
	
	
	
	
	
	
	1

	N of Persons
	19723
	689
	
	
	
	
	
	
	
	
	
	
	6705



Table 11. HealthEfficient facility-level reliability. (Due to a small number of entities at this level, we are only presenting the minimum and maximum reliability)
	
	Overall
	Min
	Decile
1
	Decile
2
	Decile
3
	Decile
4
	Decile
5
	Decile
6
	Decile
7
	Decile
8
	Decile
9
	Decile
10
	Max

	Reliability
	0.988
	0.976
	
	
	
	
	
	
	
	
	
	
	0.996

	Mean Performance Score
	0.301
	0.169
	
	
	
	
	
	
	
	
	
	
	0.490

	N of Entities
	3
	1
	
	
	
	
	
	
	
	
	
	
	1

	N of Persons
	4405
	435
	
	
	
	
	
	
	
	
	
	
	2510



Table 12. HCCN 1 clinician group/practice-level reliability. 
	
	Overall
	Min
	Decile
1
	Decile
2
	Decile
3
	Decile
4
	Decile
5
	Decile
6
	Decile
7
	Decile
8
	Decile
9
	Decile
10
	Max

	Reliability
	0.999
	0.998
	0.998
	0.999
	0.999
	0.999
	0.999
	0.999
	0.999
	0.999
	0.999
	1
	1.000

	Mean Performance Score
	0.388
	0.000
	0-0.002
	0.002-0.072
	0.108-0.201
	0.368
	0.448-0.512
	0.543
	0.611-0.618
	0.677
	0.708-0.981
	0.985-0.989
	0.989

	N of Entities
	17
	1
	2
	2
	2
	1
	2
	1
	2
	1
	2
	2
	2

	N of Persons
	19723
	537
	1079
	1820
	1567
	1450
	1987
	1481
	1690
	1168
	1944
	5537
	3676



Table 13. HealthEfficient clinician group/practice-level reliability. (Due to a small number of entities at this level, we are only presenting the minimum and maximum reliability)
	
	Overall
	Min
	Decile
1
	Decile
2
	Decile
3
	Decile
4
	Decile
5
	Decile
6
	Decile
7
	Decile
8
	Decile
9
	Decile
10
	Max

	Reliability
	0.966
	0.800
	
	
	
	
	
	
	
	
	
	
	0.999

	Mean Performance Score
	0.301
	0.000
	
	
	
	
	
	
	
	
	
	
	0.512

	N of Entities
	6
	1
	
	
	
	
	
	
	
	
	
	
	1

	N of Persons
	4405
	10
	
	
	
	
	
	
	
	
	
	
	1996




Appendix A: 
An Alternative Reliability Analysis Method for Assessing Quality Measures
Sam Field, PhD; Pat Malone, PhD; Philip Hastings, PhD; Eric Booth, MA
[bookmark: introduction]Introduction
We derive an alternative reliability parameter using health service quality indicators as an example. We argue that this formulation is more consistent with the underlying data-generating process than a commonly utilized beta-binomial approach from the health service quality literature (Adams, 2009). Our alternative approach is more widely applicable and can include situations where the quality measures for a health care provider are averaged over a small number of observations/patients. We describe a straightforward implementation of our approach using the R statistical software package.
[bookmark: the-beta-binomial-model.]The Beta-Binomial model
The measures of service quality we employ all take the form of a binomial proportion:
[image: y sub i over n sub i comma]
where [image: y sub i] is a count of patients who were provided a particular service in cluster [image: i], and [image: n sub i] is the total number of patients in the cluster who were eligible to receive that service. The beta-binomial model begins with the assumption that the observed counts of services received by patients within cluster [image: i] arise as a binomial random variable with parameters [image: pi sub i] and [image: n sub i].
[image: p open paren Y equals y sub i vertical bar n sub i comma pi sub i close paren equals Binomial open paren n sub i comma pi sub i]
The approach further assumes that the cluster-level proportion parameters [image: pi sub i], or “true” quality scores for providers, are sampled from a population of quality scores across clusters that follow a beta distribution with parameters [image: alpha naught] and [image: Beta naught].
[image: p open paren product equals pi sub i vertical bar alpha naught comma beta naught close paren equals Beta open paren alpha naught comma beta naught close paren]
When a parameter of a random variable is itself a random variable, the statistical distribution of that parameter is known as a prior distribution. In this case, the beta distribution is a prior distribution for the parameter [image: pi sub i] in the binomial distribution. Furthermore, the substitution of [image: alpha naught] and [image: beta naught] for [image: pi sub i] in the binomial distribution leads to the beta-binomial distribution.
[image: p open paren Y equals y sub i vertical bar n sub i comma alpha naught comma beta naught close paren equals Beta Binomial open paren n sub i comma alpha naught comma beta naught close paren]
Such a mixture of two statistical distribution does not always produce a third statistical distribution (i.e. beta-binomial) that is well-defined. When it does, the resulting distribution is called a "compound distribution" and the prior distribution for the parameter is known as a "conjugate prior". Thus, the beta distribution is a conjugate prior of the binomial distribution, and the beta-binomial distribution is the resulting compound distribution. 
In practice, the parameters [image: alpha naught] and [image: beta naught] are estimated from the observed quality scores as [image: alpha hat naught] and [image: beta hat naught]. As an example, we plot the density of the beta distribution with maximum likelihood estimates (MLE) [image: alpha hat naught] and [image: beta hat naught]of [image: alpha naught] and [image: beta naught] obtained from a beta-binomial regression of a sample of service quality measures taken from 99 U.S. counties. The measures obtained indicate the proportion of eligible patients in each county that received at least one “Most or Moderately Effective Contraceptive Method” (Most-Mod) service over the course of a year. 
Figure 1 depicts the distribution of observed quality measures as a histogram, while the fitted beta distribution is depicted as a continuous density plot. The mean, median, and mode of the distribution is close to .4 indicating that in the average county, approximately 40% of women receive at least one Most-Mod service. In addition, most of the county-level variation is restricted to an interval of .2 to .6. As can be seen from the plot, the fit to the beta distribution is approximate. Specifically, the fitted distribution does not capture a small cluster of counties with quality scores > .6. As an approximation, however, the beta distribution does appear to fit the observed data adequately. 
Figure 1: Histogram with density plot overlay depicting the county-level distribution of Most-Mod service quality measures.
[image: Figure 1.  For Most-Mod service quality measures at the county level depicted, alpha equals 31.5 while beta equals 47.53.]

Although not evident in Figure 1, the range (i.e. x-axis) of the beta distribution is restricted to the 0,1 interval, which makes it a particularly suitable prior for a binomial parameter, [image: pi sub i]. This is easier to see if we plot a service quality indicator with an either very high or very low incidence. In Figure 2, we present the same plot for a service quality measure with a lower frequency, long-acting reversible contraception (LARC). In contrast to the estimated prior distribution for the Most-Mod service quality measure, the distribution of LARC quality measures is shifted considerably to the left with a noticeable right skew. 

Figure 2: Histogram with density plot overlay depicting the county-level distribution of LARC service quality measures.
[image: This is an image of Figure 2.  For the LARC service quality measure at the county level, alpha equals 8.2 and beta equals 128.43.  ]
As Adams (2009) notes, the beta distribution is very flexible when it comes to fitting the observed distribution of service quality measures. Various combinations of the [image: alpha naught ] and [image: beta naught] parameters generate a wide range of shapes - including U-shaped distributions where high and low-quality providers are widely separated from each other (Liu, et. al., 2013). Since this flexibility only requires the estimation of two parameters, the risk of over-fitting the observed data is minimal in cases where the number of clusters is large (e.g., > 30). 
[bookmark: the-predictive-posterior-distribution-fo]The predictive posterior distribution for health service quality
From a Bayesian perspective, predictions regarding the “true” cluster-level service quality score for any given cluster (e.g., provider or county) is based on the posterior predictive distribution (PPD) of [image: pi sub i]. The PPD is the distribution of possible values for [image: pi sub i] for each cluster, conditional on the observed quality scores in that cluster, [image: y sub i over n sub i], as well as the estimated parameters in the prior beta distribution ([image: alpha hat naught], 
[image: beta hat naught]. Because of the conjugacy property discussed above, the PPD is analytically tractable. Specifically, the PPD for [image: pi sub i] is proportional to another beta distribution.
[image: p open paren product equals pi sub i vertical bar n sub i comma i sub i comma alpha naught comma beta naught close paren proportional to Beta open paren open paren alpha not plus y sub i close paren comma beta not plus open paren n sub i minus y sub i close paren close paren]
In the current context, the PPD is the distribution of possible “true” cluster-level service quality scores based on sampling a single quality measure (i.e.,  [image: y sub i over n sub i]) from a population of true quality scores that are assumed to follow a beta distribution with known or estimated parameters [image: alpha naught] and [image: beta naught]. 
For the purpose of deriving reliability measures, we focus on the mean, [image: E open paren pi sub i close paren], of this distribution:
[image: E open paren pi sub i vertical bar n sib i comma y sub i comma alpha naught comma beta naught close paren equals E open paren Beta open paren open paren alpha naught plus y sub i close paren comma open paren beta naught plus open paren n sub i minus y sub i close paren close paren close paren]
We can substitute the analytically derived mean of the beta distribution, [image: alpha naught over open paren alpha naught plus beta naught close paren], in the right side of the equation and simplify the result.
[image: E open paren pi sub i vertical bar n sub i comma y sub i comma alpha naught comma beta naught comma close paren equals open paren alpha naught plus y sub i close paren over open paren alpha naught plus y sub naught close paren plus open paren beta naught plus open paren n sub i minus y sub i close paren close paren equals open paren alpha naught plus y sub i close paren over open paren alpha naught plus beta naught plus n sub i close paren]
The empirical Bayes shrinkage estimator
Our derivation of the cluster-specific reliability estimate, [image: lambda sub i], employs a commonly used identity for the empirical Bayes shrinkage estimator. Using this identity in the equation below (substituting empirically-estimated values [image: alpha hat naught] and [image: beta hat naught] for unobserved population parameters [image: alpha naught] and [image: beta naught], we define the mean of the posterior predictive distribution as equal to [image: a]combination of the observed proportions, [image: y sub i over n sub i ], and the mean of the prior beta distribution for the "true" service quality scores, [image: pi sub i], weighted by the reliability [image: lambda sub i],
[image: open paren alpha hat naught plus y sub i close paren over open paren alpha naught plus beta naught plus n sub i close paren equals lambda sub i open paren y sub i over n sub i close paren plus open paren 1 minus lambda sub i close paren open paren alpha naught  close paren over open paren alpha hat naught plus betga hat naught close paren]
As the reliability [image: lambda sub i] approaches 1 for a given cluster (nearing perfect reliability), the mean of the posterior predictive distribution for that cluster approaches the observed proportion. Conversely, for [image: lambda sub i] values less than 1, the mean of the predictive posterior is "shrunk" towards the [estimated] mean of the prior distribution [image: alpha hat over open paren alpha hat naught plus beta hat naught close paren] For any given cluster, the more the shrinkage estimator is pulled towards the mean of the prior distribution, the less reliable the observed quality measures are for that cluster.
[bookmark: the-classical-test-theory-definition-of-]The classical test theory definition of reliability
In classical test score theory, reliability is defined as a ratio of true score variance to observed score variance (Novick, 1965):
[image: lambda sub i equals sigma squared for the true over sigma spared for the observed]
In the beta-binomial model, the variance of the true score in the numerator is equal to the variance of the prior distribution for [image: pi sub i]. This is distributed as beta with an analytically derived variance:
[image: sigma squared of the true equals the variance open paren pi sub i close paren equals open paren alpha naught beta naught close paren over open paren alpha naught plus beta naught squared close paren times open paren alpha naught plus beta naught plus 1 close paren]
The variance in the observed service incidence, [image: y sub i], is the variance of the compound distribution - the beta-binomial. However, we need to derive the variance of the observed proportions, [image: y sub i over n sub i]. In the first step, we note that the variance of any random variable multiplied by a constant is the variance of the random variable times the square of the constant. Thus, 
[image: sigma squared for the observed equals variance of open paren y sub i over n sub i close paren equals variance of open paren y sub i close paren times open paren 1 over n sub i close paren squared]
In the second step we replace [image: variance open paren y sub i close paren] with the analytically derived variance of beta-binomial distribution. Thus, 
[image: sigma squared for the observed equals variance of open paren y sub i close paren multiplied by open paren 1 over n sub i close paren squared equals the term open paren n sub i open paren alpha naught beta naught close paren open paren alpha naught plus beta naught plus n sub i close paren over open paren alpha naught plus beta naught close paren squared open paren alpha naught plus beta naught plus 1 close paren close paren times open paren 1 over n sub i close paren squared]
In the final step, the ratio of true score to observed score variance in the beta-binomial model, [image: KutoolsEquPic:𝜆_𝑖]becomes:
[image: lambda sub i equals  sigma squared of the true equals open paren alpha naught beta naught close paren over open paren alpha naught plus beta naught squared close paren times open paren alpha naught plus beta naught plus 1 close paren over the term open paren n sub i open paren alpha naught beta naught close paren open paren alpha naught plus beta naught plus n sub i close paren over open paren alpha naught plus beta naught close paren squared open paren alpha naught plus beta naught plus 1 close paren close paren times open paren 1 over n sub i close paren squared]
After simplifying we are left with a straight-forward expression for [image: lambda sub i].
[image: lambda sub i equals n sub i over alpha naught plus beta naught plus n sub i]
Algebraic proof of the identity above is available from the authors upon request. [footnoteRef:1] [1:  Carlin and Louis (2000) also derive an expression for the beta-binomial reliability parameter. Although their derivation is based on a different parameterization of the beta prior distribution, when expressed as a function of  and , their result is equivalent to ours (pp. 67-68). 
] 

To illustrate the PPD and the empirical Bayes shrinkage estimator, we return to the 99-county example and the Most-Mod quality measures. In Figure 3, the PPDs for 2 different counties are plotted on top of the fitted prior distribution previously seen in Figure 1. We also indicate the means of each PPD as dotted vertical lines and of the observed quality measure ([image: y sub i over n sub i]) as thick, dashed vertical lines. The arrows indicate the direction and magnitude of the shrinkage of the EB estimate towards the mean of the prior distribution. 


Figure 3: PPD for two counties with a prior distribution overlay.
[image: This is an image of Figure 3.  The Most Mod measure for County #1 (on the left) and County #2 (on the right) are plotted on this graph.  See the previous paragraph plus the following paragraph for a description of this plot.  ]
Although the general shapes of the plotted PPDs are similar, the more peaked distribution seen for the county on the left (county #1) reflects greater certainty about the location of that county’s “true” quality score. As our formulation of reliability indicates, this difference between the two counties is entirely a function of their difference in size. The numbers of patients in the left and right clusters are 230 and 141, respectively. 
An alternative expression for Beta-Binomial reliability
In the sections above, we have derived a formulation for reliability that is consistent with the definition of the Bayesian shrinkage estimator as the mean of the posterior predictive distribution of the beta-binomial model. It is also consistent with the classical test theory, which views reliability as the proportion of total measurement variance that is attributable to true score variance. However, as we discuss below, it does not appear to be consistent with a formulation of beta-binomial reliability that often appears in the health care quality literature.
[bookmark: an-alternative-expression-for-beta-binom]In a widely cited technical report from the RAND Corporation that was written for health care quality researchers, Adams (2009) offered an alternative formulation for beta-binomial reliability. Their approach was based on a least-squares formulation for reliability (Raudenbush & Bryk, 2002). Specifically,
[image: lambda sub i equals variance of open paren pi sub i close paren over open paren variance open paren pi sub i close paren plus variance open paren y sub i over n sub i close paren over n close paren]
For [image: variance of open paren pi sub i close paren], Adams used the variance of the prior beta distribution.
[image: variance of open paren pi sub i close paren equals open paren alpha naught beta naught close paren over open paren alpha naught plus beta naught squared close paren times open paren alpha naught plus beta naught plus 1 close paren],
while [image: variance of open paren y sub i over n sub i close paren] was set equal to the variance of the binomial distribution,
[image: var of open paren y sub i over n sub i close paren equals y sub i over n sub i times open paren 1 minus y sub i over n sub i close paren]
Thus, the Adams formulation for beta-binomial reliability is:
[image: lambda sub i equals the term open paren alpha naught beta naught close paren over open paren alpha naught plus beta naught close paren squared times open paren alpha naught plus beta naught plus 1 close paren over the term open paren alpha naught beta naught close paren over open paren alpha naught plus beta naught close paren squared times open paren alpha naught plus beta naught plus 1 close paren plus open paren y sub i over n sub i times open paren 1 minus y sub i over n sub i close paren close paren over n sub i close paren]
To demonstrate the practical consequences of the two different approaches to calculating beta-binomial reliability, we return to the 99-county example and the Most-Mod quality measure. In Figure 4, we have plotted county-level reliability parameters calculated using the formulation that we described against the results obtained under Adams’ (2009) approach. The diagonal represents the line of equality. The appearance of the plotting characters varies along two dimensions. The size of the characters is proportional to the natural log of the cluster size, ln([image: n sub i]), while character type identifies counties with observed measures ([image: y sub i over n sub i]) that are either within or outside the interquartile range of the sample. 

Figure 4: Comparison of reliability parameters: Most-Mod quality measure.
[image: This is an image of Figure 4.  See the previous paragraph for more information.  ]
Figure 4 reveals very little difference between the two approaches. However, when we turn to the same plot for the LARC quality measure shown in Figure 5, substantial differences between the two methodologies emerge. Specifically, the disagreement between the methods appears greater in counties where the observed quality measure lies outside versus inside the inter-quartile range of the sample.
This pattern of results is expected because the reliability calculations that we describe depend exclusively on the size of the cluster while the Adams (2009) approach depends on both the size and the observed incident count. The results were not as evident with the Most-Mod quality measure because the binomial variance is relatively insensitive to variation in the quality measures within the central range of the 0,1 interval. 

Figure 5: Comparison of reliability parameters: LARC quality measure.
[image: This is an image of Figure 5.  See the previous paragraph and the paragraph below the chart for more information.  ]

When the variation in the cluster-level quality measures moves toward the boundaries, the between-cluster differences in the binomial variance component of the reliability parameter get much larger, and identically sized clusters can have dramatically different reliabilities. This is not possible with our calculations as identically sized clusters sampled from the same prior distribution will have equal reliability. It is also worth noting that the three small counties that appear in the bottom-right corner of the plot had perfect reliability under the Adams (2009) approach. This is because the variance of the binomial distribution equals zero when the observed measure is either 0 or 1. 
Although the Adams (2009) formulation has been used to calculate beta-binomial reliability in previous empirical studies of health care quality (e.g., Adams and Paddock, 2017; Blair, et. al., 2015; Kazis, et. al., 2017; Staggs and Cramer, 2016), it has two distinct disadvantages when compared to the approach described here. First, we argue from statistical principle that the variance of the observed quality measures should be based on the beta-binomial compound distribution, and not the sum of the prior distribution (beta) and likelihood distribution (binomial) variances. Thus, the reliability formulation offered by Adams does not appear to be consistent with the underlying statistical model. 
Second, under the Adams approach a component of measurement variance is determined by the observed data itself - the score, [image: y sub i over n sub i]. For clusters in which the observed measures equal 0 or 1, the binomial variance used in the calculations will equal zero, and the reliability measure will, consequently, be unstable in small clusters. The reliability calculations are also unstable when the bulk of the cluster-level variation lies close to the 0,1 boundaries - a situation that can be present even when the clusters are large. Indeed, Figure 5 demonstrates that the Adams (2009) approach can produce both substantially inflated and deflated estimates of reliability under such conditions. In contrast, the formulation that we offer does not depend on [image: y sub i] and is equally valid across all cluster sizes. 
Implementation
The approach to reliability calculation that we advocate is mathematically straightforward and can be implemented in many statistical software packages. In our implementation of the method, we use the statistical software R; specifically, we use the vglm() function in the “VGAM” package (Yee and Mohler, 2020). The procedure reparametrizes the beta-binomial distribution from [image: beta binomial open paren n sub i alpha naught comma beta naught close paren] to [image: beta binomial open paren n sub i comma mu comma gamma close paren], where [image: mu equals alpha naught over open paren alpha naught plus beta naught close paren], or the mean of the prior distribution, and [image: gamma equals 1 over open paren alpha naught plus beta naught plus 1 close paren]. The second parameter, [image: gamma], is interpreted as the overdispersion parameter or intra-cluster correlation coefficient (ICC), and it is possible to write reliability as a function of  [image: gamma]:
[image: lambda sub i equals n sub i over open paren 1 over gamma hat plus open paren n sub i minus 1 close paren close paren].
As the ICC coefficient, [image: gamma],  approaches 1, the reliability parameter also approaches 1, regardless of the within-cluster sample size. 
The mean of the beta distribution, [image: mu], is linked to a linear combination of covariates via the inverse logit link. 
[image: mu equals natural exponent to power of X b over open paren 1 plus natural exponent to power of X b close paren],
Where X is a matrix of covariates (including a constant) and b is a vector of regression parameters. In our implementation, we exclude covariates and estimate an intercept-only model. The ICC is also estimated on the logit scale.
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R syntax to calculate beta-binomial reliability
# This is a very sparse R function that calculates reliability measures for binomial count
# data assuming a beta-binomial distribution.  The arguments in the function "y" and "n"
# correspond to the total number of "successes" and "trials" respectively.

beta_rel <- function(y,n){
  
  fit <- vglm(cbind(y,n-y) ~ 1, betabinomial)  #estimate beta-binomial model
  parms <- coef(fit, matrix = TRUE) #extract logit(mu) and logit(gamma) 
  
  #Inverse logit link
  mu <- exp(coef(fit, matrix = TRUE)[1])/(1+exp(coef(fit, matrix = TRUE)[1])) 
  gamma <-exp(coef(fit, matrix = TRUE)[2])/(1+exp(coef(fit, matrix = TRUE)[2])) 
  theta <- gamma/(1-gamma)

  #Derive Beta parameters
  alpha=mu/theta;
  beta=(1-mu)/theta;
  
  #Calculate reliability
  rel <- n/(alpha+beta+n)

  cbind(y,n,id,rel)
}
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