Skip to main content

Hybrid Hospital-Wide Readmission (HWR) Measure with Claims and Electronic Health Record Data

CBE ID
2879e
Endorsement Status
1.0 New or Maintenance
Previous Endorsement Cycle
Is Under Review
Yes
Next Maintenance Cycle
Fall 2024
1.6 Measure Description

Hybrid Hospital-Wide Readmission (HWR) Measure with Claims and Electronic Health Record Data measures facility-level risk-standardized rate of readmission (RSRR) within 30 days of discharge from an inpatient admission, among Medicare Fee-For-Service (FFS) and Medicare Advantage (MA) patients aged 65 years and older. 

Index admissions are divided into five groups based on their reason for hospitalization (e.g., surgery/gynecology, general medicine, cardiorespiratory, cardiovascular, and neurology); the final measure score (a single risk-standardized readmission rate) is calculated from the results of these five different groups, modeled separately. Variables from administrative claims and electronic health records are used for risk adjustment.

Measure Specs
General Information
1.7 Measure Type
1.7 Composite Measure
No
1.3 Electronic Clinical Quality Measure (eCQM)
1.8 Level of Analysis
1.9 Care Setting
1.10 Measure Rationale

Hospital readmission, for any reason, is disruptive to patients and caregivers, costly to the healthcare system, and puts patients at additional risk of hospital-acquired infections and complications. Readmissions are also a major source of patient and family stress and may contribute substantially to loss of functional ability, particularly in older patients. 

Some readmissions are unavoidable and result from inevitable progression of disease or worsening of chronic conditions. However, readmissions may also result from poor quality of care or inadequate transitional care. Transitional care includes effective discharge planning, transfer of information at the time of discharge, patient assessment and education, and coordination of care and monitoring in the post-discharge period. Numerous studies have found an association between quality of inpatient or transitional care and early (typically 30-day) readmission rates for a wide range of conditions.1-8 

Randomized controlled trials have shown that improvement in the following areas can directly reduce readmission rates: quality of care during the initial admission; improvement in communication with patients, their caregivers and their clinicians; patient education; predischarge assessment; and coordination of care after discharge.9-24 Successful randomized trials have reduced 30-day readmission rates by 20-40%. Widespread application of these clinical trial interventions to general practice has also been encouraging. Since 2008,32 Medicare Quality Improvement Organizations have been funded to focus on care transitions, applying lessons learned from clinical trials. Several have been notably successful in reducing readmissions within 30 days.31 Evidence that hospitals have been able to reduce readmission rates through these quality-of-care initiatives illustrates the degree to which hospital practices can affect readmission rates. 

Despite these isolated successful interventions, the overall national readmission rate remains high, with a 30-day readmission following nearly one fifth of discharges. Furthermore, readmission rates vary widely across institutions.25-27 Both the high baseline rate and the variability across institutions speak to the need for a quality measure to prompt more concerted and widespread action. 

Given that studies have shown readmissions within 30 days to be related to quality of care, that interventions have been able to reduce 30-day readmission rates for a variety of specific conditions, and that high and variable readmission rates indicate opportunity for improvement, it is reasonable to consider an all-condition 30-day readmission rate as a quality measure.

Core Clinical Data Elements (CCDE) are included in the Hybrid HWR measure to improve upon case-mix risk-adjustment, using only claims-based comorbidity information, by adding laboratory values and vital signs to reflect patients' clinical status at the start of inpatient encounter.

References

  1. Frankl SE, Breeling JL, Goldman L. Preventability of emergent hospital readmission. American Journal of Medicine. Jun 1991;90(6):667-674.
  2. Corrigan JM, Martin JB. Identification of factors associated with hospital readmission and development of a predictive model. Health Services Research. Apr 1992;27(1):81-101.
  3. Oddone EZ, Weinberger M, Horner M, et al. Classifying general medicine readmissions. Are they preventable? Veterans Affairs Cooperative Studies in Health Services Group on Primary Care and Hospital Readmissions. Journal of General Internal Medicine. Oct 1996;11(10):597-607.
  4. Ashton CM, Del Junco DJ, Souchek J, Wray NP, Mansyur CL. The association between the quality of inpatient care and early readmission: a meta-analysis of the evidence. Med Care. Oct 1997;35(10):1044-1059.
  5. Benbassat J, Taragin M. Hospital readmissions as a measure of quality of health care: advantages and limitations. Archives of Internal Medicine. Apr 24 2000;160(8):1074-1081.
  6. Courtney EDJ, Ankrett S, McCollum PT. 28-Day emergency surgical re-admission rates as a clinical indicator of performance. Annals of the Royal College of Surgeons of England. Mar 2003;85(2):75-78.
  7. Halfon P, Eggli Y, Pr, et al. Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care. Medical Care. Nov 2006;44(11):972-981.
  8. Hernandez AF, Greiner MA, Fonarow GC, et al. Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA. May 5 2010;303(17):1716-1722.
  9. Naylor M, Brooten D, Jones R, Lavizzo-Mourey R, Mezey M, Pauly M. Comprehensive discharge planning for the hospitalized elderly. A randomized clinical trial. Ann Intern Med. Jun 15 1994;120(12):999-1006.
  10. Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow-up of hospitalized elders: a randomized clinical trial. Jama. Feb 17 1999;281(7):613-620.
  11. Krumholz HM, Amatruda J, Smith GL, et al. Randomized trial of an education and support intervention to prevent readmission of patients with heart failure. Journal of the American College of Cardiology. Jan 2 2002;39(1):83-89.
  12. van Walraven C, Seth R, Austin PC, Laupacis A. Effect of discharge summary availability during post-discharge visits on hospital readmission. Journal of General Internal Medicine. Mar 2002;17(3):186-192.
  13. Conley RR, Kelly DL, Love RC, McMahon RP. Rehospitalization risk with secondgeneration and depot antipsychotics. Annals of Clinical Psychiatry. Mar 2003;15(1):23-31.
  14. Coleman EA, Smith JD, Frank JC, Min S-J, Parry C, Kramer AM. Preparing patients and caregivers to participate in care delivered across settings: the Care Transitions Intervention. Journal of the American Geriatrics Society. Nov 2004;52(11):1817-1825.
  15. Phillips CO, Wright SM, Kern DE, Singa RM, Shepperd S, Rubin HR. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure: a meta-analysis. JAMA. Mar 17 2004;291(11):1358-1367.
  16. Jovicic A, Holroyd-Leduc JM, Straus SE. Effects of self-management intervention on health outcomes of patients with heart failure: a systematic review of randomized controlled trials. BMC Cardiovasc Disord. 2006;6:43.
  17. Garasen H, Windspoll R, Johnsen R. Intermediate care at a community hospital as an alternative to prolonged general hospital care for elderly patients: a randomized controlled trial. BMC Public Health. 2007;7:68.
  18. Mistiaen P, Francke AL, Poot E. Interventions aimed at reducing problems in adult patients discharged from hospital to home: a systematic meta-review. BMC Health Services Research. 2007;7:47.
  19. Courtney M, Edwards H, Chang A, Parker A, Finlayson K, Hamilton K. Fewer emergency readmissions and better quality of life for older adults at risk of hospital readmission: a randomized controlled trial to determine the effectiveness of a 24-week exercise and telephone follow-up program. Journal of the American Geriatrics Society. Mar 2009;57(3):395-402.
  20. Jack BW, Chetty VK, Anthony D, et al. A reengineered hospital discharge program to decrease rehospitalization: a randomized trial. Ann Intern Med. Feb 3 2009;150(3):178-187.
  21. Koehler BE, Richter KM, Youngblood L, et al. Reduction of 30-day postdischarge hospital readmission or emergency department (ED) visit rates in high-risk elderly medical patients through delivery of a targeted care bundle. Journal of Hospital Medicine. Apr 2009;4(4):211-218.
  22. Weiss M, Yakusheva O, Bobay K. Nurse and patient perceptions of discharge readiness in relation to postdischarge utilization. Medical Care. May 2010;48(5):482-486.
  23. Stauffer BD, Fullerton C, Fleming N, et al. Effectiveness and cost of a transitional care program for heart failure: a prospective study with concurrent controls. Archives of Internal Medicine. Jul 25 2011;171(14):1238-1243. 
  24. Voss R, Gardner R, Baier R, Butterfield K, Lehrman S, Gravenstein S. The care transitions intervention: translating from efficacy to effectiveness. Archives of Internal Medicine. Jul 25 2011;171(14):1232-1237.
  25. Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circulation. Sep 2008;1(1):29-37. 
  26. Krumholz HM, Lin Z, Drye EE, et al. An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction. Circulation. Mar 1 2011;4(2):243-252. 
  27. Lindenauer PK, Normand SL, Drye EE, et al. Development, validation, and results of a measure of 30-day readmission following hospitalization for pneumonia. Journal of Hospital Medicine. Mar 2011;6(3):142-150
  28. Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. Sep 2008;1(1):29-37. doi:10.1161/circoutcomes.108.802686
  29. Krumholz HM, Lin Z, Drye EE, et al. An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction. Circ Cardiovasc Qual Outcomes. Mar 2011;4(2):243-52. doi:10.1161/circoutcomes.110.957498
  30. Rothman MJ, Rothman SI, Beals J. Development and validation of a continuous measure of patient condition using the Electronic Medical Record. J Biomed Inform. Oct 2013;46(5):837-48. doi:10.1016/j.jbi.2013.06.011
  31. (CFMC) CFfMC. Care Transitions QIOSC. 2010; http://www.cfmc.org/caretransitions/ Hospital-wide Readmission Measure 68 July 2012 , 2011.
  32. Ashton CM, Del Junco DJ, Souchek J, Wray NP, Mansyur CL. The association between the quality of inpatient care and early readmission: a meta-analysis of the evidence. Med Care. Oct 1997;35(10):1044-1059.
1.25 Data Source Details

The components of this HWR measure, as specified in this CBE submission, are comprised of data from the following sources:

Cohort: Medicare fee-for-service claims and Medicare Advantage encounters; Medicare enrollment data.

Outcome: Medicare enrollment data

Risk adjustment: Medicare fee-for-service claims, Medicare Advantage encounters, supplemented with EHR data (core clinical data elements, or CCDE).

Feasibility of data collection is addressed in Section 3.1, “Feasibility”. 

Additional information on the data sources for this CBE submission can be found in Section 4.1 “Data and Samples” and in Table 7 of the Tables and Figures attachment.